AUSTRIAN ACADEMY OF SCIENCES

EGG: modal voice

EXPLORATION AND CLASSIFICATION OF VOCAL FRY, PERIOD DOUBLING, AND MODAL VOICE **USING ACOUSTIC AND EGG MEASURES**

Yaqian Huang | Acoustics Research Institute, ÖAW

yaqian.huang@oeaw.ac.at | yaqianhuang.netlify.app

I. OVERVIEW

OE/

Creaky voice differs from modal voice in acoustic & phonatory properties, but how subtypes of creaky voice differ is less clear.

Existing classification of creak subtypes are mainly based on acoustic waveforms (Hedelin & Huber 1990, Redi & Shattuck-Hufnagel 2001)

<u>Q</u>: How do subtypes of creaky voice differ in their acoustic and phonatory properties?

Common acoustic attributes of creaky voice

Low fO

Irregular Low fO spectral tilt

Others

nrototypical	V	V	v				
ριστοτγρισαι	Χ	Χ	Χ				
vocal fry	X	X		damped pulses			
period doubling	alternation	X		subharmonics	MARA MARA Maran	[WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW	$\left[\left \left(\mathcal{N}_{\mathcal{N}} \right) \right \left(\mathcal{N}_{\mathcal{N}} \right) \right \left(\mathcal{N}_{\mathcal{N}} \right) \right]$
aperiodic		X	X		MAA MAA MAA MAA MAA		
					Audio: vocal frv	Audio: period doubling	Audio: modal voice

EGG: vocal fry

After Keating et al. 2015, Huang 2022

<u>Goal</u>: evaluate the importance of source and filter characteristics in distinguishing between vocal fry, period doubling (PD), and modal voice

- Most important acoustic measures: f0, H1-H2, H1, SoE, H2, H4, and HNR (0-500Hz)
- > Most important phonatory measures: duration of the glottal opening phase and contact quotient of the glottal pulse

II. METHODS

- Simultaneous recordings of audio and electroglottography (EGG) of continuous read speech in Mandarin (Huang 2024)
- 20 university students (10F); 480 sentences/recording
- Fixed carrier sentence with varying trisyllabic words + picture fillers
- wo3 tcau1 n^ji3 STIMULUS tsən3 m**x**5 s^wo1
- "I teach you how to say the STIMULUS."
- Tokens of vocal fry, PD, and modal voice were located using EGG
- 32 acoustic & 11 EGG normalized measures (VoiceSauce, EGGWorks):

III. T-SNE CLUSTERING

	Acoustics dataset							
	Vocal fry	Period doubling	Modal					
Women	482	2354	1175					
Men	156	943	428					
Total	638	3297	1603					

EGG: period doubling

5538 rows x 33 cols (gender coded as 0/1)

Acoustics + EGG dataset

324

Period doubling

Modal

187

137

324

Vocal fry

154

- Harmonics & spectral tilts: e.g., H1*, H2*, H4*, H2K*, A1*, A2*, A3*, H1*–H2*, H2*–H4*, H1*–A1*, H1*–A2*, H1*–A3*, H4*–H2K*
- HNRs, CPP, SHR (subharmonic-to-harmonic ratio)
- Formants & bandwidths; Energy measures
- Contact quotient (CQ), Cycle peak/minimum velocity/time, Speed Quotient (SQ); Contacting and opening duration
- t-SNE clustering & ML models:
- Multinomial logistic regression with *l1* regularization (Lasso)
- Random forest model
- Cross-validation: 2/3 training & 1/3 test sets

25 91 Men 179 415 Total

Women

918 rows x 44 cols (gender coded as 0/1)

modal Туре pd trv

IV. CLASSIFICATION RESULTS

Accuracy, precision, recall scores in two datasets

Acoustic	Lasso regression	Random forest
Accuracy	0.9112	0.9312
Macro avg. precision	0.8749	0.9098
Macro avg. recall	0.8137	0.8529

Top 15 important acoustic measures

Top 15 important acoustic + EGG

measures

V. DISCUSSION & CONCLUSIONS

REFERENCES

- Phonatory measures such as EGG contribute to the separation of subtypes of creaky voice
- Voicing types have stronger ties to the source dynamics associated with our vocal folds than the filter
- Mapping between perception and acoustics is direct, but what about phonatory characteristics? How are they accessible to listeners?
- Hedelin, P. and Huber, D. (1990). Pitch period determination of aperiodic speech signals. International Conference on Acoustics, Speech, and Signal Processing, 361–364.
- Huang, Y. (2022). Articulatory properties of period-doubled voice in Mandarin. Proc. Speech Prosody 2022, 545-549. Huang, Y. (2024, April 29). F0 and voice quality of coarticulated Mandarin tones. https://doi.org/10.31219/osf.io/nyva6 Keating, P., Garellek, M., & Kreiman, J. (2015). Acoustic properties of different kinds of creaky voice. Proceedings of the 18th ICPhS, 2-7.
- Redi, L. and Shattuck-Hufnagel, S. (2001). Variation in the realization of glottalization in normal speakers. Journal of Phonetics, 29(4), 407-429.
- Shue, Y.-L., Keating, P., Vicenik, C., & Yu, K. (2011). VoiceSauce: A program for voice analysis. Proceedings of the ICPhS XVII, 1846-1849.
- Tehrani, H. (2009). EGGWorks: a program for automated analysis of EGG signals. Computer program.
- Van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of machine learning research, 9(11), 2579-2605.